Graphical Multi-Task Learning

نویسنده

  • Daniel Sheldon
چکیده

We investigate multi-task learning in a setting where relationships between tasks are modeled by a graph structure. Most existing methods treat all pairs of tasks as being equally related, which can be hurt performance when the true structure of task relationships is more complex. Our method uses regularization to encourage models for task pairs to be similar whenever they are connected in the network. This idea was first proposed by Evgeniou, Micchelli and Pontil, who pointed out that the multi-task problem can be reduced to a single-task learning problem with a modified kernel constructed from the graph Laplacian. We extend their work to fully incorporate non-linear kernels and make a practical modification to the kernel that performs better in practice. We also present the first empirical evaluation of graphical multi-task learning on one synthetic and two real applications to demonstrate its value over methods that treat tasks relationships symmetrically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Task Learning of Gaussian Graphical Models

We present multi-task structure learning for Gaussian graphical models. We discuss uniqueness and boundedness of the optimal solution of the maximization problem. A block coordinate descent method leads to a provably convergent algorithm that generates a sequence of positive definite solutions. Thus, we reduce the original problem into a sequence of strictly convex `∞ regularized quadratic mini...

متن کامل

Network-Scale Traffic Modeling and Forecasting with Graphical Lasso and Neural Networks

Traffic flow forecasting, especially the short-term case, is an important topic in intelligent transportation systems (ITS). This paper does a lot of research on networkscale modeling and forecasting of short-term traffic flows. Firstly, we propose the concepts of single-link and multi-link models of traffic flow forecasting. Secondly, we construct four prediction models by combining the two mo...

متن کامل

A Survey on Multi-Task Learning

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories: feature learning approach, low-rank approach, task clustering approach,...

متن کامل

Heterogeneous Transfer Learning with RBMs

A common approach in machine learning is to use a large amount of labeled data to train a model. Usually this model can then only be used to classify data in the same feature space. However, labeled data is often expensive to obtain. A number of strategies have been developed by the machine learning community in recent years to address this problem, including: semi-supervised learning, domain a...

متن کامل

Multiple DAGs Learning with Non-negative Matrix Factorization

Probabilistic graphical models, e.g., Markov network and Bayesian network have been well studied in the past two decades. However, it is still difficult to learn a reliable network structure, especially with limited data. Recent works found multi-task learning can improve the robustness of the learned networks by leveraging data from related tasks. In this paper, we focus on the estimation of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008